
Institut für Computergraphik und
Algorithmen

Technische Universität Wien

Karlsplatz 13/186/2
A-1040 Wien

AUSTRIA

Tel: +43 (1) 58801-18601
Fax: +43 (1) 58801-18698

Institute of Computer Graphics and
Algorithms

Vienna University of Technology

email:
technical-report@cg.tuwien.ac.at

other services:
http://www.cg.tuwien.ac.at/
ftp://ftp.cg.tuwien.ac.at/

TECHNICAL REPORT

Style Transfer Functions for Illustrative Volume Rendering

S. Bruckner and M. E. Gröller
Insitute of Computer Graphics and Algorithms

Vienna University of Technology, Austria

TR-186-2-07-02

February 2007

Style Transfer Functions for Illustrative Volume Rendering

S. Bruckner and M. E. Gröller∗

Insitute of Computer Graphics and Algorithms
Vienna University of Technology, Austria

February 19, 2007

Abstract

Illustrative volume visualization frequently employs
non-photorealistic rendering techniques to enhance
important features or to suppress unwanted details.
However, it is difficult to integrate multiple non-
photorealistic rendering approaches into a single frame-
work due to great differences in the individual methods
and their parameters. In this paper, we present the con-
cept of style transfer functions. Our approach enables
flexible data-driven illumination which goes beyond us-
ing the transfer function to just assign colors and opac-
ities. An image-based lighting model uses sphere maps
to represent non-photorealistic rendering styles. Style
transfer functions allow us to combine a multitude of
different shading styles in a single rendering. We extend
this concept with a technique for curvature-controlled
style contours and an illustrative transparency model.
Our implementation of the presented methods allows in-
teractive generation of high-quality volumetric illustra-
tions.

Categories and Subject Descriptors (according to ACM
CCS): I.3.3 [Computer Graphics]: Picture/Image Gen-
eration I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1 Introduction

Volume rendering is a well established method for the
visualization of scientific data, such as tomographic
scans. Historically, most volume rendering techniques
are based on an approximation of a realistic physical
model. It was noticed, however, that traditional depic-
tions of the same types of data – as found in medical
textbooks, for example – deliberately use non-realistic
techniques in order to focus the viewer’s attention to im-
portant aspects [ER00,RE01]. Using abstraction, visual

∗E-mail: {bruckner|groeller}@cg.tuwien.ac.at

overload is prevented leading to a more effective visu-
alization. Recent approaches have considered this fact,
leading to an increased interest in illustrative volume vi-

sualization.
Approaches for illustrative volume visualization fre-
quently employ non-photorealistic rendering techniques
to mimic the style of traditional illustrations. They take
advantage of the illustrators’ century-long experience in
depicting complex structures in an easily comprehensi-
ble way. Many of these techniques require tedious tun-
ing of various parameters to achieve the desired result.
We aim to circumvent this issue by presenting the user
with a gallery of styles extracted from actual illustra-
tions.
For this purpose, we introduce the concept of style

transfer functions. Instead of defining a color transfer
function which is augmented with various parameters
for controlling the non-photorealistic rendering, our ap-
proach allows the user to directly specify styles captured
from existing artwork in the transfer function. Style
transfer functions allow the generation of volumetric il-
lustrations in the style of a given work of art (see Fig-
ure 1).
Contours are an important concept to enhance the styl-
ized depiction of volume data. We present a simple mea-
sure to calculate the curvature along the viewing direc-
tion which is used to control the thickness of style-based
contours. Our approximation is computationally very
efficient since it does not require explicit reconstruction
of second-order partial derivatives. Using this curvature
measure, we also introduce a new transparency model
based on techniques commonly found in traditional il-
lustrations. Our implementation is capable of producing
high-quality illustrations of volume data using a wide
variety of different styles at interactive frame rates.
This paper is structured as follows: In Section 2, we
discuss related work. Section 3 presents the concept of
style transfer functions. Our implementation is detailed
in Section 4. Section 5 discusses the results of our ap-
proach. The paper is concluded in Section 6.

1

2 3 STYLE TRANSFER FUNCTIONS

(a)

(b)

Figure 1: Using lit sphere maps from existing artwork.
(a) "Three Spheres II" (lithograph, 1946) by Dutch artist
M. C. Escher. (b) Direct volume renderings of a hu-
man skull using the respective spheres as style, Escher’s
painting is used as background.

2 Related Work

In computer graphics, many techniques have been de-
veloped to capture lighting effects in order to plausi-
bly embed objects in photographs or video or to cre-
ate new scenes under the same environmental condi-
tions [Deb98, SSI99, DHT∗00]. For non-photorealistic
rendering, approaches have been presented to re-
produce numerous artistic techniques, such as tone
shading [GGSC98], pencil drawing [SB99], hatch-
ing [PHWF01], or ink drawing [SFWS03]. While these
are specialized algorithms which aim to accurately sim-
ulate a particular technique, Sloan et al. [SMGG01] em-
ploy a simple method to approximately capture non-
photorealistic shading from existing artwork. Their ap-
proach forms one building block of style transfer func-
tions which we introduce in this paper (see Section 3.1).

In the context of volume visualization, the combina-
tion of different rendering styles is of particular inter-
est, as it allows to put emphasis on features of interest.

Ebert and Rheingans [ER00, RE01] present several il-
lustrative techniques which enhance structures and add
depth and orientation cues. They also propose to lo-
cally apply these methods for regional enhancement. Lu
et al. [LME∗02, LMT∗03] developed an interactive di-
rect volume illustration system that simulates traditional
stipple drawing. Csébfalvi et al. [CMH∗01] visualize
object contours based on the magnitude of local gradi-
ents as well as on the angle between viewing direction
and gradient vector using depth-shaded maximum in-
tensity projection. The concept of two-level volume ren-
dering proposed by Hauser et al. [HMBG00,HMBG01],
allows focus+context visualization of volume data by
combining maximum intensity projection and direct
volume rendering. Viola et al. [VKG04, VKG05], in-
spired by cutaway views which are commonly used
in technical illustrations, apply different compositing
strategies to prevent an object from being occluded by
less important structures. Nagy et al. [NSW02] com-
bine line drawings and direct volume rendering tech-
niques. Yuan and Chen [YC04] enhance surfaces in
volume rendered images with silhouettes, ridge and val-
leys lines, and hatching strokes. Techniques by Lu and
Ebert [LE05] as well as Dong and Clapworthy [DC05]
employ texture synthesis to apply different styles to vol-
ume data. Their approaches, however, do not deal with
shading. Krüger et al. [KSW06] use interactive magic
lenses based on traditional illustration techniques for fo-
cus+context visualization of iso-surfaces.

Multi-dimensional transfer functions have been pro-
posed to extend the classification space and to allow bet-
ter selection of features. Kniss et al. [KKH01, KKH02]
use a two-dimensional transfer function based on scalar
value and gradient magnitude to effectively extract spe-
cific material boundaries and to convey subtle sur-
face properties. Hladuvka et al. [HKG00] propose the
concept of curvature-based transfer functions. Kindl-
mann et al. [KWTM03] employ curvature information
to achieve illustrative effects, such as ridge and val-
ley enhancement. Lum and Ma [LM04] assign colors
and opacities as well as parameters of the illumination
model through a transfer function lookup. They apply
a two-dimensional transfer function to emphasize mate-
rial boundaries using illumination.

3 Style Transfer Functions

In this section, we present the concept of style transfer
functions as well as additional techniques to enhance the
illustrative depiction of volume data.

3.2 Style Transfer Functions 3
li

t
sp

h
e

re
 m

a
p

ny nx

Figure 2: Lit sphere shading. The shading of an object
is represented as a function of eye-space normal orien-
tation.

3.1 Lit Sphere Shading

Sloan et al. [SMGG01] presented a simple yet effective
method of capturing artistic lighting by using an image
of a sphere shaded in the desired style. They used this
approach for non-photorealistic rendering of polygonal
models. The basic idea is to capture color variations of
an object as a function of normal direction. As a sphere
provides coverage of the complete set of unit normals,
an image of a sphere under orthographic projection will
capture all such variations on one hemisphere (see Fig-
ure 2). This image is then used as a sphere map in-
dexed by the eye-space normals to shade another ob-
ject. Essentially, the sphere acts as a proxy object for
the illumination. In their work, Sloan et al. also de-
scribe a method for extracting lit sphere maps from non-
spherical regions in a piece of artwork. They present an
interactive tool which allows rapid extraction of shading
styles from existing images.

The lit sphere map itself is a square texture where tex-
els outside an inscribed disk are never accessed. Nor-
mal vectors parallel to the viewing direction map to
the center of the disk and normal vectors orthogonal to
the viewing direction map to the circumference of the
disk. The lit sphere map is indexed by simply convert-
ing the nx and ny components of the eye-space normal
n = (nx,ny,nz) which are in the range [−1..1] to texture
coordinate range (usually [0..1]). As the nz component
is ignored, lighting does not distinguish between front
and back faces. This is desired as the gradient direc-
tion in the volume which serves as the normal might
be flipped depending on the data values at a material
boundary.

While lit sphere shading fails to capture complex as-
pects of realistic illumination, it is well-suited to rep-
resent the general shading style of an object. Images of

regular shading

, 0.4()

o
p

a
city

data value

data value

normal

lit sphere lookup

, 0.4()

o
p

a
city

data value

data value

normal

(a) (b)

Figure 3: Basic concept of style transfer functions. (a)
Regular transfer function. (b) Style transfer function.

an illuminated sphere are relatively easy to obtain and
the extraction process described by Sloan et al. allows
to build up a large database of styles with little effort.
Another advantage is the view dependency of this tech-
nique. All lighting effects will appear as if the light
source was a headlight, i.e. as if it were rotating with the
camera. Generally, this is the desired setup in volume
visualization. For these reasons, we employ lit sphere
maps as the basic components in our style transfer func-
tions.

3.2 Style Transfer Functions

We assume a continuous volumetric scalar field f (P).
A sample value at an arbitrary position P is denoted
by s = f (P). We denote the gradient at position P by
g = ∇ f (P). For the purpose of shading, the normal-
ized gradient n = g

|g| serves as the normal. Convention-
ally, the transfer function assigns color and opacity to
each scalar value. There are approaches that use multi-
dimensional transfer functions which employ deriva-
tives of the volumetric function, such as the gradient
magnitude or the curvature magnitudes. For simplicity
we will restrict our discussion to one-dimension trans-
fer functions at this point. Our technique equally applies
to multi-dimensional transfer functions (see Section 4.3
for a discussion of this matter).

During rendering, at each sample point the scalar value
and the gradient are reconstructed. The transfer func-
tion defines the color and opacity contribution of this
sample, while the gradient is used to compute the illu-
mination. The illumination model and its parameters are
usually fixed, i.e. they are not dependent on the trans-
fer functions. Lum et al. [LM04] presented an approach
were the parameters of the Phong illumination model

4 3 STYLE TRANSFER FUNCTIONS

Figure 4: Engine block rendered using different style transfer functions. The lit sphere maps used in the transfer
function are depicted at the bottom right corner of each image.

are specified by an additional lighting transfer function.
We extend this idea of data-dependent lighting to en-
able a wide variety of non-photorealistic shading styles.
In our approach, we integrate color and shading infor-
mation in a combined style transfer function. Math-
ematically, this is equivalent to extending the transfer
function domain to include normal direction. A one-
dimensional transfer function based on the scalar value
becomes three-dimensional. Conceptually, it is easier to
illustrate this by replacing the single color of a transfer
function entry by a lit sphere map (see Figure 3).
From a user’s point of view, the transfer function now
not only specifies the color over the range of data values,
but also the shading as a function of eye-space normal
direction. The complexity of specifying a transfer func-
tion, however, is not increased. Instead of assigning a
single color to a certain value range, a pre-defined shad-
ing style represented by a lit sphere map is chosen. In
this context, one advantage of sphere maps as opposed
to other mappings is that they can be directly presented
to the user as an intuitive preview image for the style.

Style transfer functions allow for a flexible combina-
tion of different shading styles in a single transfer func-
tion. Unshaded volume rendering (a constant color
sphere), tone shading, cartoon shading, metallic shad-
ing, painterly rendering, and many other styles can be
used in a single rendering. Style transfer functions
also enable inconsistent lighting of different structures
in a single data set as a means of accentuating fea-
tures [LHV04]. Figure 4 shows examples of different
styles applied to a data set.

3.3 Style Contours

Illustrators frequently employ contours to enhance the
depiction of objects. Contours help to clearly delin-
eate object shape and resolve ambiguities due to occlu-
sion by emphasizing the transition between front-facing
and back-facing surface locations. In volume rendering,
contours are generally produced using the dot product

between the view vector v and the normal n. The sam-
ple color is darkened when v is approximately orthogo-
nal to n, i.e., v ·n is close to zero. The drawback of this
method is an uncontrolled variation in the apparent con-
tour thickness. Where the surface is nearly flat, a large
region of surface normals is nearly perpendicular to the
view vector, making the contours too thick. Conversely,
in fine structures, where the emphasis provided by con-
tours could be especially helpful, they appear to be too
thin. These problems are illustrated in Figure 5 (a).

To remedy this problem, Kindlmann et al. [KWTM03]
proposed to regulate contours based on the normal cur-
vature along the view direction κv. A sample is defined
to be on a contour if the following condition is true:

|n · v| ≤
√

T κv(2−Tκv) (1)

where T is a user-defined thickness value. While this
method is very effective in depicting contours of con-
stant thickness, it requires the expensive reconstruc-
tion of second-order derivatives of the volumetric func-
tion. Specifically, the curvature measure κv is based
on the geometry tensor. The geometry tensor is con-
structed from the Hessian matrix. Computing the ge-
ometry tensor in a fragment program is very expensive
and would not allow for interactive performance. On
the other hand, pre-computation would require two ad-
ditional 3D textures (the geometry tensor is symmetric
and can be stored in six values per voxel). Hadwiger
et al. [HSS∗05] circumvent this problem by restricting
themselves to iso-surfaces, but for direct volume ren-
dering no viable solution has been presented so far.

We propose a simple approximation of κv which does
not suffer from these drawbacks. We are interested in
the rate of change in normal direction of the iso-surface
corresponding to the current sample value along the
viewing direction. When performing volume ray cast-
ing, we step along the ray direction and evaluate the
normal at every sample point. The angle between two
subsequent normals along the ray taken at a sufficiently

3.4 Illustrative Transparency 5

(a) (b) (c) (d)

Figure 5: Style contours. (a) Contours without curvature-controlled thickness. (b) Curvature-controlled contours
with constant color. (c) Curvature-controlled contours with varying colors. (d) Our curvature measure (darker
regions corresponds to higher curvature).

v
ie

w
in

g
 r

a
y

Figure 6: Using the angle between the normals of two
subsequent points along a viewing ray as an approxi-
mate measure for the curvature along the view direction
κv.

small distance gives us information about the curvature
along the viewing direction (see Figure 6). When per-
forming ray casting, we can therefore use the angle be-
tween the normal at the current sample point and the
previous normal divided by the step size as an estimate
for κv. This is of course not accurate, as we are not
stepping along the iso-surface. However, due to the fi-
nite resolution of the volume this coarse approximation
has proven to be sufficient for our purposes. The ad-
vantage of this approach is that it introduces almost no
additional costs as the normal is evaluated at every sam-
ple point anyway. Since we now have a measure for the
curvature along the viewing direction, we can use the
adjustment proposed by Kindlmann et al. Using a fixed
contour color, however, would be potentially inconsis-

tent with the selected styles. Instead, the contour color
should be determined by the style transfer function. For
this reason we adjust the coordinates for the lit sphere
map lookup based on our curvature measure: if a sam-
ple falls below the contour threshold, we simply push
the coordinates outwards along the radius of the sphere.
This not only allows for varying contour appearance be-
tween different styles, but also for a variation based on
the normal direction. Contours in a highlight region, for
example, may be brighter than in a dark region. Fig-
ure 5 (b) uses a style with constant contour color while
Figure 5 (c) employs varying contour colors. Our cur-
vature measure is depicted in Figure 5 (d).

3.4 Illustrative Transparency

Transparency in illustrations frequently employs the
100-percent-rule where transparency falls off close to
the edges of transparent objects and increases with the
distance to edges [DWE02]. Since this technique non-
uniformly decreases the opacity of an object, it results
in a clearer depiction of transparent structures while still
enabling the viewer to see through them.

In our approach there are two basic ways to specify
opacity:

Uniform opacity αu. The opacity value in the transfer
function controls the overall opacity of a sample
independent of normal direction.

Directional opacity αd . Each entry in a lit sphere map
is an (r,g,b,α) tupel. This allows for varying opac-
ity based on the normal direction.

While αu allows to control opacity independent of style,
αd is a function of the style. For the overall opacity we

6 4 IMPLEMENTATION

want to apply the following two constraints in order to
maintain the semantics of opacity control in the transfer
function:

• If the value of αu is one, the opacity of a sample
should be solely determined by αd .

• If the value of αu is zero, the sample should be
completely transparent.

In order to combine these constraints with the 100-
percent-rule, we employ a modulation of αu with the
curvature measure proposed in the previous section and
the gradient magnitude to compute the overall opacity α

of a sample:

α = αd ·α
0.5+max(0,|n·v|−

√
T κv(2−Tκv))·(1−|g|)

u (2)

If the exponent is lower than one, the opacity of a sam-
ple is enhanced, if it is greater than one the opacity
is reduced. The term max(0, |n · v| −

√

T κv(2−Tκv))
is zero when the sample point is on the contour, and
increases as points are farther away from the contour.
The term 1 − |g| ranges from zero to one and is in-
cluded to prevent enhancement of nearly homogeneous
regions, where noise causes the gradient direction to
vary rapidly. When decreasing αu from one to zero,
flat and homogeneous regions become more transparent
first. As αu drops further, the remaining contour regions
also begin to become more transparent. The constant of
0.5 restricts the maximum opacity enhancement. This
value was empirically determined and has has proven to
be effective for all our test data sets. The overall effect
is weighted by αd . An example for our transparency
model is shown in Figure 7.

4 Implementation

In this section we describe our implementation of style
transfer functions for a GPU-based ray casting ap-
proach. Our renderer makes use of conditional loops
and dynamic branching available in Shader Model 3.0
GPUs. It was implemented in C++ and OpenGL/GLSL.
The presented techniques can be integrated into an ex-
isting renderer using regular transfer functions with little
effort.

4.1 Style Transfer Function Lookup

A transfer function is usually implemented as a lookup
table which corresponds to a 1D texture on the GPU.
For conventional transfer functions, this texture stores
an (r,g,b,α) tuple for every data value. At each sam-
ple point, the interpolated data value is used to perform
a texture lookup in this 1D texture to retrieve the color
and opacity of the sample. Within the transfer function
texture, linear interpolation is performed. A naive im-
plementation of a style transfer function would simply
replace the 1D texture by a 3D texture which stores an
(r,g,b,α) tupel for every data value and normal direc-
tion. This approach requires only one texture lookup
and exploits native trilinear interpolation. It does, how-
ever, dramatically increase storage requirements and is
therefore not practical. Thus, we use an alternative ap-
proach which does not suffer from this problem. Our
implementation uses three different textures (see Fig-
ure 8):

Transfer function texture t f t. This 1D texture stores
the uniform opacities αu and index values i for each
data value. The index values in the transfer func-
tion texture range from zero to N − 1, where N is
the number of styles specified in the style transfer
function. For example, an index value of one cor-
responds to the second style, two corresponds to
the third style, etc. Fractional values indicate that
an interpolation between two styles has to be per-
formed.

Index function texture i f t. As one style might be used
multiple times for different value ranges, we de-
fine M as the number of distinct styles in the style
transfer function. The one-dimensional index func-
tion texture maps the index values i (ranging from
zero to N − 1) retrieved from the transfer function
texture to locations j in the style function texture
(ranging from zero to M − 1). As this mapping
is discrete, no interpolation is performed for index
function texture lookups. If no style is used multi-
ple times, the index function texture lookup can be
skipped.

Style function texture s f t. This texture contains the
discrete set of M distinct styles specified in the cur-
rent style transfer function. As each style is a two-
dimensional image, an intuitive representation for
this function would be a 3D texture. Since this can
lead to problems with mip-mapping, an alternative
way of storage may be more appropriate (see Sec-
tion 4.2).

4.1 Style Transfer Function Lookup 7

Figure 7: Illustrative transparency – as the opacity of the orange structures is reduced, contours remain more
opaque than flat regions.

1

2

0

3

0

0 0

2.25 0.5

1.95 0.38

4 0.8

3.5 0.6

2 0.4

3.75 0.7

4.05 0.8

7 1

. . .

. . .

2

0

1

2

1 4

3

transfer function

texture (tft)

style function

texture (sft)

index function

texture (ift)

i
i0

i1

j0

j1

s n

i αd

data value normal

Figure 8: Style transfer function lookup for data value s and normal n.

8 4 IMPLEMENTATION

(c) (d)

(a) (b)

Figure 9: Illustrative volume rendering using a style transfer function. Images (a)-(d) depict different opacity
settings.

Using these three textures, the complete lookup pro-
ceeds as follows (see Figure 8):

1. Using the sample value s, retrieve the index value i

and the uniform opacity αu from the transfer func-
tion texture t f t: (i,αu) = t f t(s).

2. Compute the indices to be used in the index func-
tion texture lookup i0 = ⌊i⌋, i1 = i0 + 1 and the in-
terpolation weight w = i− i0.

3. Retrieve the style indices j0 and j1 using two
lookups into the index function texture i f t: j0 =
i f t(i0), j1 = i f t(i1). If no style occurs multiple
times in the style transfer function, these lookups
can be skipped.

4. Using the the nx and ny components of the
eye-space normal and the style indices j0 and
j1, perform two lookups into the style func-
tion texture s f t and linearly interpolate between
them: (r,g,b,αd) = s f t(nx,ny, j0) · (1 − w) +
s f t(nx,ny, j1) ·w.

4.2 Mip-Mapping

Current graphics hardware uses mip-mapping to avoid
aliasing for texture lookups. To take advantage of the
GPU’s mip-mapping capabilities for style lookups, cer-
tain considerations have to be made.

First, for 3D textures, each dimension is halved for ev-
ery subsequent mip-map level. If styles are stored as
slices of a 3D texture, undesired mixing between styles
occurs at higher mip-map levels. Thus, if the style func-
tion texture is implemented as as a 3D texture, mip-
mapping has to be disabled. One solution to this prob-
lem is the EXT_texture_array OpenGL extension. A
texture array is a collection of two-dimensional images
arranged in layers. Mip-mapping is performed sepa-
rately for each layer. This extension is currently only
available on GeForce 8 series graphics hardware. A
third possibility is to arrange the styles in a single 2D
texture. Although this slightly complicates indexing, it
is the option of our choice. We perform custom mip-
map generation to avoid mixing between styles at their
borders.

When performing a texture lookup, the appropriate mip-
map level is computed using the screen-space deriva-
tives of the texture coordinates. These derivatives are

9

Figure Regular TF Style TF
Figure 9 (a) 11.7 fps 11.9 fps
Figure 9 (b) 10.5 fps 9.6 fps
Figure 9 (c) 10.1 fps 8.1 fps
Figure 9 (d) 12.5 fps 12.8 fps

Table 1: Performance comparison of style transfer func-
tions and regular transfer functions measured on a sys-
tem equipped with an AMD Athlon 64 X2 Dual 4600+
CPU and an NVidia GeForce 7900 GTX GPU. Perfor-
mance numbers are given in frames per second. Data di-
mensions: 256× 256× 230. Viewport size: 512× 512.
Object sample distance: 0.5.

undefined when the texture fetch takes place inside vary-
ing control flow. As our algorithm casts a ray for each
pixel, this is always the case and leads to severe arti-
facts. Thus, we have to manually compute the mip-map
level at every sample point. In our implementation, we
employ our curvature measure combined with a depth-
dependent term for mip-map selection.

4.3 Multi-dimensional Transfer Functions

So far, we have only discussed how to extend one-
dimensional transfer functions based on the data value
to style transfer functions. However, the presented tech-
niques also apply to multi-dimensional domains. For
common two-dimensional transfer functions based on
the data value and the gradient magnitude, the follow-
ing changes are required: The transfer function texture
becomes a 2D texture and stores two indices instead of
one. The first index increases along the value axis and
the second index increases along the gradient magni-
tude axis. One index function texture for each of these
axes is stored and two lookups are performed into each
of these textures. This leads to four style indices, i.e.
four lookups into the style function texture have to be
performed. The results are then bilinearly interpolated
using the weights derived from the two indices in the
transfer function texture.

4.4 Performance

In comparison to a regular one-dimensional transfer
function, a style transfer function lookup requires a
maximum of four additional texture fetches (two for the
index function texture and two for the style function tex-
ture). The index function texture does not require fil-
tering and is rather small. It therefore heavily benefits
from texture caching. On GeForce 8 series hardware
it could also be implemented as a buffer texture using

the EXT_texture_buffer_object OpenGL extension for
additional performance gains. Although the additional
texture fetches incur an overhead, the cost for evaluating
the illumination model is saved when using style trans-
fer functions.

To evaluate the performance of our approach, we com-
pared the use of a style transfer function for classifica-
tion and shading to a regular one-dimensional transfer
function with simple Phong shading. The same opaci-
ties were used for both transfer functions. The viewport
size was 512× 512 and the object sample distance was
set to 0.5. We used the data set depicted in Figure 9
(dimensions: 256× 256× 230). Our test system was
equipped with an AMD Athlon 64 X2 Dual 4600+ CPU
and an NVidia GeForce 7900 GTX GPU. The results of
this comparison are shown in Table 1. If only one style
is visible, the performance is approximately equal. If
multiple style are visible, the style transfer function per-
forms slightly worse due to texture caching effects. In
total, however, the overhead of employing a style trans-
fer function is only minor but greatly increases the flex-
ibility.

5 Discussion

In our experiments, style transfer functions have proven
to be a simple method for generating images and ani-
mations in a wide variety of different appearances. Lit
sphere maps are particularly effective in representing the
styles typically used in medical illustrations. Our ap-
proach is well-suited for this application, as illustrations
frequently rely on certain shading conventions. This
means that a database of styles can potentially be reused
for a large number of data sets. Figure 9, for example,
uses styles obtained from medical illustrations.

Another advantage is that the theme of an image can
quickly be changed by simply replacing one set of styles
with another one. This is illustrated in Figure 10, where
two very different results are achieved by a simple ex-
change of styles.

While the representation of styles as lit sphere maps
has proven to be effective and efficient, it has draw-
backs. One problem already discussed by Sloan et
al. [SMGG01] occurs when the sphere contains promi-
nent texture features. When the camera is rotated, they
will appear to follow the eye leading to an undesired
metallic impression. To solve this problem, texture and
lighting information have to be separated. The texture
information could then be aligned to the object, for ex-
ample based on curvature directions. This might be an
interesting direction for future research.

10 REFERENCES

Figure 10: Changing the theme of an image by replac-
ing styles. Top: Drawing of a staghorn beetle by A. E.
Brinev. Middle: Volume rendering of a staghorn beetle
using a similar style. Bottom: Staghorn beetle rendered
using a more realistic style.

6 Conclusions

In this paper, we presented a new technique for data-
dependent image-based shading of volumetric data. We
introduced the concept of style transfer functions which
define the color at a sample point as a function of the
data value and the eye-space normal. This allows for
flexible combination of different rendering styles. We
extended our approach to handle thickness-controlled
style-based contours using an efficient approximation of
the normal curvature along the viewing direction. Fur-
thermore, we introduced a new transparency model de-
signed to emulate techniques employed by illustrators.
Our framework is able to generate high-quality images

resembling traditional illustrations at interactive frame-
rates.

References

[CMH∗01] CSÉBFALVI B., MROZ L., HAUSER H., KÖNIG A.,
GRÖLLER M. E.: Fast visualization of object con-
tours by non-photorealistic volume rendering. Computer

Graphics Forum 20, 3 (2001), 452–460.

[DC05] DONG F., CLAPWORTHY G. J.: Volumetric texture
synthesis for non-photorealistic volume rendering of
medical data. The Visual Computer 21, 7 (2005), 463–
473.

[Deb98] DEBEVEC P.: Rendering synthetic objects into real
scenes: Bridging traditional and image-based graphics
with global illumination and high dynamic range pho-
tography. In Proceedings of ACM SIGGRAPH 1998

(1998), pp. 189–198.

[DHT∗00] DEBEVEC P., HAWKINS T., TCHOU C., DUIKER H.-
P., SAROKIN W., SAGAR M.: Acquiring the reflectance
field of a human face. In Proceedings of ACM SIG-

GRAPH 2000 (2000), pp. 145–156.

[DWE02] DIEPSTRATEN J., WEISKOPF D., ERTL T.: Trans-
parency in interactive technical illustrations. Computer

Graphics Forum 21, 3 (2002).

[ER00] EBERT D. S., RHEINGANS P.: Volume illustration:
non-photorealistic rendering of volume models. In Pro-

ceedings of IEEE Visualization 2000 (2000), pp. 195–
202.

[GGSC98] GOOCH A., GOOCH B., SHIRLEY P., COHEN E.: A
non-photorealistic lighting model for automatic techni-
cal illustration. In Proceedings of ACM SIGGRAPH

1998 (1998), pp. 447–452.

[HKG00] HLADUVKA J., KÖNIG A., GRÖLLER M. E.:
Curvature-based transfer functions for direct volume
rendering. In Proceedings of the Spring Conference on

Computer Graphics 2000 (2000), pp. 58–65.

[HMBG00] HAUSER H., MROZ L., BISCHI G.-I., GRÖLLER

M. E.: Two-level volume rendering - fusing MIP
and DVR. In Proceedings of IEEE Visualization 2000

(2000), pp. 211–218.

[HMBG01] HAUSER H., MROZ L., BISCHI G.-I., GRÖLLER

M. E.: Two-level volume rendering. IEEE Transactions

on Visualization and Computer Graphics 7, 3 (2001),
242–252.

[HSS∗05] HADWIGER M., SIGG C., SCHARSACH H., BÜHLER

K., GROSS M.: Real-time ray-casting and advanced
shading of discrete isosurfaces. Computer Graphics Fo-

rum 24, 3 (2005), 303–312.

[KKH01] KNISS J., KINDLMANN G., HANSEN C.: Interac-
tive volume rendering using multi-dimensional transfer
functions and direct manipulation widgets. In Proceed-

ings of IEEE Visualization 2001 (2001), pp. 255–262.

[KKH02] KNISS J., KINDLMANN G., HANSEN C.: Multidimen-
sional transfer functions for interactive volume render-
ing. IEEE Transactions on Visualization and Computer

Graphics 8, 3 (2002), 270–285.

[KSW06] KRÜGER J., SCHNEIDER J., WESTERMANN R.:
Clearview: An interactive context preserving hotspot vi-
sualization technique. IEEE Transactions on Visualiza-

tion and Computer Graphics 12, 5 (2006), 941–948.

REFERENCES 11

[KWTM03] KINDLMANN G., WHITAKER R., TASDIZEN T.,
MÖLLER T.: Curvature-based transfer functions for
direct volume rendering: Methods and applications.
In Proceedings of IEEE Visualization 2003 (2003),
pp. 513–520.

[LE05] LU A., EBERT D.: Example-based volume illus-
trations. In Proceedings of IEEE Visualization 2005

(2005), pp. 655–662.

[LHV04] LEE C. H., HAO X., VARSHNEY A.: Light collages:
Lighting design for effective visualization. In Proceed-

ings of the IEEE Visualization 2004 (2004), pp. 281–
288.

[LM04] LUM E. B., MA K.-L.: Lighting transfer functions us-
ing gradient aligned sampling. In Proceedings of IEEE

Visualization 2004 (2004), pp. 289–296.

[LME∗02] LU A., MORRIS C. J., EBERT D. S., RHEINGANS P.,
HANSEN C.: Non-photorealistic volume rendering us-
ing stippling techniques. In Proceedings of IEEE Visu-

alization 2002 (2002), pp. 211–218.

[LMT∗03] LU A., MORRIS C. J., TAYLOR J., EBERT D. S.,
HANSEN C., RHEINGANS P., HARTNER M.: Illustra-
tive interactive stipple rendering. IEEE Transactions on

Visualization and Computer Graphics 9, 2 (2003), 127–
138.

[NSW02] NAGY Z., SCHNEIDER J., WESTERMANN R.: Interac-
tive volume illustration. In Proceedings of Vision, Mod-

eling, and Visualization 2002 (2002), pp. 497–504.

[PHWF01] PRAUN E., HOPPE H., WEBB M., FINKELSTEIN A.:
Real-time hatching. In Proceedings of ACM SIGGRAPH

2001 (2001), pp. 581–586.

[RE01] RHEINGANS P., EBERT D. S.: Volume illustration:
Nonphotorealistic rendering of volume models. IEEE

Transactions on Visualization and Computer Graphics

7, 3 (2001), 253–264.

[SB99] SOUSA M. C., BUCHANAN J.: Computer-generated
graphite pencil rendering of 3D polygonal models. Com-

puter Graphics Forum 18, 3 (1999), 195–207.

[SFWS03] SOUSA M. C., FOSTER K., WYVILL B., SAMAVATI F.:
Precise ink drawing of 3D models. Computer Graphics

Forum 22, 3 (2003), 369–379.

[SMGG01] SLOAN P.-P., MARTIN W., GOOCH A., GOOCH B.:
The lit sphere: A model for capturing NPR shading from
art. In Proceedings of Graphics Interface 2001 (2001),
pp. 143–150.

[SSI99] SATO I., SATO Y., IKEUCHI K.: Acquiring a radiance
distribution to superimpose virtual objects onto a real
scene. IEEE Transactions on Visualization and Com-

puter Graphics 5, 1 (1999), 1–12.

[VKG04] VIOLA I., KANITSAR A., GRÖLLER M. E.:
Importance-driven volume rendering. In Proceed-

ings of IEEE Visualization 2004 (2004), pp. 139–145.

[VKG05] VIOLA I., KANITSAR A., GRÖLLER M. E.:
Importance-driven feature enhancement in volume
visualization. IEEE Transactions on Visualization and

Computer Graphics 11, 4 (2005), 408–418.

[YC04] YUAN X., CHEN B.: Illustrating surfaces in volume. In
Proceedings of Joint IEEE/EG Symposium on Visualiza-

tion 2004 (2004), pp. 9–16.

